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Abstract-Frequent item sets mining plays an important 
role in association rules mining.  Over the years, a variety 
of algorithms for finding frequent item sets in very large 
transaction databases have been developed.  The main 
focus of this paper is to analyze the implementations of the 
Frequent item set Mining algorithms such as SMine and 
Apriori Algorithms.  
 
General Terms-Data Mining, Frequent Item sets, 
Association Rule Mining. 
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1. INTRODUCTION 
Association rule mining is a focused area in today’s 
data mining research.  It usually consists of two phases 
viz., discovery of frequent itemsets and generation of 
rules from the discovered frequent itemsets.   Finding 
frequent itemsets has gained popularity because it has 
more number of applications.   Many research have 
been done and algorithms developed. [7, 8, 9]  
A number of algorithms for mining frequent item sets 
have been proposed after Agarwal first introducing the 
problem of deriving categorical association rule from 
transactional databases in [8].   These existing 
algorithms uses the candidate generate-and-test 
approach and the pattern growth approach.  
In Apriori[1, 4] as well as many subsequent studies[5, 
6], each iteration of the candidate generate-and-test 
approach,  pairs of frequent k-item sets are joined to 
form candidate (k+1)-item sets, then scanned the 
database to verify their supports.  The Apriori algorithm 
achieves good reduction on the size of candidate sets, 
however, it takes many scans of the database to check 
the candidate item supports as much as the most long 
length of patterns.  This algorithm is also compared 
with DIC Alogrithm [2]. 
In SMine[3] algorithm for mining the set of all frequent 
itemsets in the database by reducing the number of 
scans.   During the first database scan the number of 
occurrences of each item is determined and the 
infrequent ones are discarded.  Then the frequent items 
are counted in each transaction.   The transactions are 
sorted based on the number of frequent items in 
descending order.  Then graph based approach is used 
to find the frequent item sets.   
In this paper, we analyze the implementations of 
frequent item set algorithms SMine and Apriori 
algorithm. 

The organization of this paper is as follows: In Section 
2, we give an insight into the detailed problem 
description.  Section 3 explains the Apriori algorithm.  
In section 4, we give a detailed explanation of SMine 
algorithm used for generating frequent itemsets.  In 
Section 5, the implementation and performance 
comparision of Apriori and SMine algorithm are given.   
We end with our conclusion in Section 6. 
 

2. PROBLEM DESCRIPTION 
Let I = {I1, I2, ….In} be a set of items.  Let D, the task-
relevant data, be a set of transactions in a supermarket,  
where each transaction T is a set of items, such that T 
I.   Each transaction is assigned an identifier called TID.   
Let A be a set of items, a transaction T is said to contain 
A if and only if AT.   An association rule is an 
implication of the form AB, where AI, BI, and 
A∩B=.  The rule AB holds in the transaction set D 
with support s, where s is the percentage of transactions 
in D that contain AB (i.e., both A and B).  This is 
taken to be the probability P(AB). The rule AB has 
confidence c in the transaction set D if c is the 
percentage of transactions in D containing A that also 
contain B.   This is taken to be the conditional 
probability, P(B|A).  That is, Support (AB) = 
P(AB) = s, Confidence (AB) = P(B|A) =Support 
(AB)/Support (A)=c.  Thus association rules is 
composed of the following two steps: 1) Find the large 
item sets that have transaction support above a 
minimum support and 2) From the discovered large 
item sets generate the desired association rules. 
 
2.1 Two Phases of Association Rule Mining 
There are two phases to deal with association rule 
mining. First one is about the algorithm efficiency.  The 
research on developing out an algorithm with less 
computation complexity is one of the most interesting 
topics related to association rule mining.  The mining 
efficiency is so important because association rule 
mining always works on large database.  The number of 
rules grows exponentially with the number of items.  
The related work mainly focus on efficient pruning on 
large data sets and reducing the times of scanning data. 
Second phase is to find the effective ways needed to 
select interesting rules from discovered rules.  
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3. APRIORI  ALGORITHM 
3.1 Procedure 
Apriori is an influential algorithm for mining frequent 
itemsets for Boolean association rules.  This algorithm 
uses prior knowledge of frequent itemset properties. 
This algorithm iteratively finds all possible itemsets that 
have support greater or equal to a given minimum 
support value.  First,the set of frequent frequent 1- 
itemsets is found by scanning the database to 
accumulate the count for each item, and collecting those 
items that satisfy minimum support.  This resulting set 
is denoted as L1.   Next L1 is used to find L2, the set of 
frequent 2-itemsets, which is used to find L3, and so on, 
until no more frequent k-itemsets can be found.   The 
finding of each Lk requires one full scan of the 
database.  The output of the Apriori algorithm consists 
of a set of k-itemsets (k=1,2,……..) that have support 
greater or equal to a given minimum support value.  
Apriori Works as follows : 
1. First, the 1-itemset C1 is obtained. Based on C1, we 

count the frequency of occurrence of each itemset 
in all the transactions, prune the itemsets that do 
not exceed the support threshold and get the 
frequent 1-itemset L1. 

2. For all k, k=2,…, use Lk to generate Ck+1 by Lk join  
Lk.    For each of these (k+1)-itemsets, check 
whether all its k subset is in the frequent k-itemset 
Lk. If the answer is yes, keep it in Ck+1; otherwise, 
prune it. After getting Ck+1, scan the database once 
again to count the support for all the itemsets in 
Ck+1, prune those do not exceed the support 
threshold and get Lk+1. 

3. Repeat the above step 2 until no itemset could be 
generated for Ck+1. 

 

Apriori algorithm needs to scan the database multiple 
times.  When mining a huge database, multiple database 
scans are costly.   One feasible strategy to improve the 
efficiency of Apriori algorithm is to reduce the number 
of database scans. 
 

4. SMINE ALGORITHM 
SMine algorithm is an efficient algorithm to find 
frequent itemsets.    The number of database scans is 
reduced when compared with Apriori algorithm.  
During the first database scan the number of 
occurrences of each item is determined and the 
infrequent ones are discarded.   Then the frequent items 
are counted in each transaction.  The transactions are 
sorted based on the number of frequent items in 
descending order.  Then graph based approach is used 
to find the frequent item sets.   
4.1 Procedure 
Step 1: The algorithm scans the database in order to 

count the number of occurrences of each item 
to find the candidate 1-itemset with their 
support count. 

Step 2: The set of frequent 1-itemset L1 can then be 
determined by removing the items having less 
than the minimum support count.   It consists 
of the candidate 1-itemsets satisfying 

minimum support.   Let the number of 
frequent 1-itemset be ‘n’.  

Step 3:   Removes the infrequent items from each 
transaction and count the number of items in 
each transaction ( item_count ). 

Step 4:   The transactions are sorted in descending 
order based on the item count.  

Step 5: Create a table called ’M’ with two columns 
namely ‘no.of.items’ and ‘no.of. 
transactions’.   Let no=n; 

Step 6: Add a row with no.of.items  =  no and 
no.of.transactions is equal to the number of 
transactions having item_count >= no.  If no 
>2, then decrement ‘no’ value by 1 and repeat 
step 6. 

 Step 7: Select the maximum ‘no.of.items’ from the 
table M having the ‘no.of.transactions‘ equal 
to or greater than the minimum support count.   
Let it be m. Create a directed graph starting 
from all possible items in m-itemset as the 
header nodes in the first level,  all the 
possible (m-1) itemset in the second level,  all 
the possible (m-2) itemset in the next level 
and so on,  until 2-itemset. 

Step 8 : Get the ‘no.of transactions’ for m-itemset from 
the table M.   Let it be ‘R’.  If it is greater 
than or equal to the minimum support count, 
then find the support count of each unvisited 
node of the m-itemset by scanning first ‘R’ 
transactions.   If the set is frequent, mark this 
node and all its sub nodes as frequent items.   
If a set is frequent, all its subsets must also be 
frequent. 

Step 9 :  Go to the next level .Let m=m-1.  Repeat step 
8 until m =2. 

Step 10: All the marked nodes are frequent itemsets. 
 
4.2 Algorithm : 
Input: Database, D, of transactions; minimum support 

threshold, min_sup. 
Output: L, frequent itemsets in D. 
Method: 
Begin 

L1= find_frequent_1-itemsets(D); 
n=number of items in L1; 
L2, L3….., Ln  are initially set to null; 
for each transaction t in D 
{ 

//Removing infrequent items from 
transactions 
 Delete item not in L1  from t . 
  t. item_count = Number of frequent items.  

} 
Sort the transactions in D, descending order  based on 
their item_count. 
call DB_details(D)  
call creategraph(L1, n) 

End 
procedure DB_details(D) 
for( k=n; k>=2; k--) 
      Mk=Number of transactions having item_count >=k; 

// Arrange these values in a table called ‘M’ 
 end procedure 
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procedure creategraph(L1, n )  
// L1 is frequent 1-itemset, n is the number of  
// items in L1 
 while( Mn satisfies min.support count) 

 n=n-1; 
Add all possible  n- itemsets  as the header nodes 
Cn = all possible ‘n’ itemsets. 
for ( k=n;  k >= 3;  k--) 
       Call subgraph(Ck) 
for ( k=n;  k >= 2;  k--) 
      Call frequent_items (k) 
end procedure 
 
procedure subgraph(Ck) 
 Ck-1 = {} 
for each item in Ck  
 { 
Ck-1 = Ck-1 U  ( all the possible subset (k-1) itemsets ) 

for each subset (k-1) itemset 
     { 

If  the node is already created  then 
         make a link to the parent node 
 else    

        create a new node for the item and make a link to 
the parent node 

      } 
 }  

end procedure 
procedure  frequent_items(k) 
  for each itemset in Ck  
 { 

 If (item is not visited || not marked)  then 
   { 
Find the support count by scanning first Mk  transactions . 

If it satisfies the min. support then  
      { 

    Mark this node and all its subnodes up to the level 
2 itemsets are frequent.   

    Add these marked nodes to Lk, Lk-1,  Lk-2, …., L2 in 
their respective array. 

      } 
      else 
             mark this node as infrequent. 

      } 
 } 
end procedure 
 
SMine Algorithm reduces the number of scans when 
compared to the Apriori Algorithm.  It finds the 
candidate 1-itemsets using the same approach as 
Apriori.   The remaining steps are different from 
Apriori.  
 

5. IMPLEMENTATION AND ANALYSIS 
This section deals with the implementation of Apriori 
and SMine Algorithm.   We compare the frequent item 
sets obtained and the factors that affect the efficiency of 
the algorithms. 
5.1 Result analysis: 
For the experiment we have used datasets of Hepatitis 
and Heart dataset.  These datasets was obtained from 
the UCI repository of machine learning databases 
[CC98].  
Table 1 shows the characteristics of the datasets 
selected for the experiment. 
 

To study the performance of the algorithms, support 
threshold of 30% to 70% were used.  The Table 2 
shows that the execution time of the algorithms 
decreases with varying support thresholds for a hepatitis 
data set.  Table 3 shows that the execution time of the 
algorithms with varying support thresholds for a heart 
data set.   In these two cases, the execution time of 
SMine is less when compared to Apriori algorithm. 
 

Table 1:  Datasets used in comparison 

 
Table 2 : Execution Time for Apriori and SMine – 

Hepatitis Data set 
Support (%)  Execution Time (Seconds) 

 Apriori SMine 
30 0.86 0.45 
40 0.22 0.16 
50 0.03 0.02 
60 0.02 0.00 
70 0.00 0.00 

 

 
Fig. 1 

Table 3 : Execution Time for Apriori and SMine- Heart 
Data set 
Support  (%) Execution Time (Seconds)

Apriori SMine
30 0.06 0.04
40 0.04 0.03
50 0.03 0.02
60 0.01 0.01
70 0.01 0.00

 
Fig. 2 
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Dataset 
No.of 

transactions 
No. of 

Attributes 
Attribute 

Types 
Hepatitis.D56.
N155.C2. num 

155 20 
Categorical, 
Integer, Real 

heart.D52.N30
3.C5.num 

303 75 
Categorical, 
Integer, Real 
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Here, we present a performance comparison frequent 
Item set Mining algorithms Apriori and SMine.   We 
find that, in Apriori requires multiple passes of the data 
to calculate the support count. 
 

6. CONCLUSION 
In this paper,  Apriori algorithm is compared with 
SMine Algorithm using two different datasets namely 
Hepatitis and Heart datasets.   As per the result, SMine 
Algorithm is superior to the Apriori algorithm. 
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