
Comparison of Frequent Item Set Mining
Algorithms

J.R.Jeba
 Department of Computer Applications

Noorul Islam Centre For Higher Education
Noorul Islam University, Kumaracoil

Dr.S.P.Victor
Department of Computer Science
St.Xavier’s College (Autonomous)

PalayamKottai.

Abstract-Frequent item sets mining plays an important
role in association rules mining. Over the years, a variety
of algorithms for finding frequent item sets in very large
transaction databases have been developed. The main
focus of this paper is to analyze the implementations of the
Frequent item set Mining algorithms such as SMine and
Apriori Algorithms.

General Terms-Data Mining, Frequent Item sets,
Association Rule Mining.

Keywords-SMine, item_count, frequent_items.

1. INTRODUCTION
Association rule mining is a focused area in today’s
data mining research. It usually consists of two phases
viz., discovery of frequent itemsets and generation of
rules from the discovered frequent itemsets. Finding
frequent itemsets has gained popularity because it has
more number of applications. Many research have
been done and algorithms developed. [7, 8, 9]
A number of algorithms for mining frequent item sets
have been proposed after Agarwal first introducing the
problem of deriving categorical association rule from
transactional databases in [8]. These existing
algorithms uses the candidate generate-and-test
approach and the pattern growth approach.
In Apriori[1, 4] as well as many subsequent studies[5,
6], each iteration of the candidate generate-and-test
approach, pairs of frequent k-item sets are joined to
form candidate (k+1)-item sets, then scanned the
database to verify their supports. The Apriori algorithm
achieves good reduction on the size of candidate sets,
however, it takes many scans of the database to check
the candidate item supports as much as the most long
length of patterns. This algorithm is also compared
with DIC Alogrithm [2].
In SMine[3] algorithm for mining the set of all frequent
itemsets in the database by reducing the number of
scans. During the first database scan the number of
occurrences of each item is determined and the
infrequent ones are discarded. Then the frequent items
are counted in each transaction. The transactions are
sorted based on the number of frequent items in
descending order. Then graph based approach is used
to find the frequent item sets.
In this paper, we analyze the implementations of
frequent item set algorithms SMine and Apriori
algorithm.

The organization of this paper is as follows: In Section
2, we give an insight into the detailed problem
description. Section 3 explains the Apriori algorithm.
In section 4, we give a detailed explanation of SMine
algorithm used for generating frequent itemsets. In
Section 5, the implementation and performance
comparision of Apriori and SMine algorithm are given.
We end with our conclusion in Section 6.

2. PROBLEM DESCRIPTION
Let I = {I1, I2, ….In} be a set of items. Let D, the task-
relevant data, be a set of transactions in a supermarket,
where each transaction T is a set of items, such that T
I. Each transaction is assigned an identifier called TID.
Let A be a set of items, a transaction T is said to contain
A if and only if AT. An association rule is an
implication of the form AB, where AI, BI, and
A∩B=. The rule AB holds in the transaction set D
with support s, where s is the percentage of transactions
in D that contain AB (i.e., both A and B). This is
taken to be the probability P(AB). The rule AB has
confidence c in the transaction set D if c is the
percentage of transactions in D containing A that also
contain B. This is taken to be the conditional
probability, P(B|A). That is, Support (AB) =
P(AB) = s, Confidence (AB) = P(B|A) =Support
(AB)/Support (A)=c. Thus association rules is
composed of the following two steps: 1) Find the large
item sets that have transaction support above a
minimum support and 2) From the discovered large
item sets generate the desired association rules.

2.1 Two Phases of Association Rule Mining
There are two phases to deal with association rule
mining. First one is about the algorithm efficiency. The
research on developing out an algorithm with less
computation complexity is one of the most interesting
topics related to association rule mining. The mining
efficiency is so important because association rule
mining always works on large database. The number of
rules grows exponentially with the number of items.
The related work mainly focus on efficient pruning on
large data sets and reducing the times of scanning data.
Second phase is to find the effective ways needed to
select interesting rules from discovered rules.

 J.R. Jeba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2838-2841

2838

3. APRIORI ALGORITHM
3.1 Procedure
Apriori is an influential algorithm for mining frequent
itemsets for Boolean association rules. This algorithm
uses prior knowledge of frequent itemset properties.
This algorithm iteratively finds all possible itemsets that
have support greater or equal to a given minimum
support value. First,the set of frequent frequent 1-
itemsets is found by scanning the database to
accumulate the count for each item, and collecting those
items that satisfy minimum support. This resulting set
is denoted as L1. Next L1 is used to find L2, the set of
frequent 2-itemsets, which is used to find L3, and so on,
until no more frequent k-itemsets can be found. The
finding of each Lk requires one full scan of the
database. The output of the Apriori algorithm consists
of a set of k-itemsets (k=1,2,……..) that have support
greater or equal to a given minimum support value.
Apriori Works as follows :
1. First, the 1-itemset C1 is obtained. Based on C1, we

count the frequency of occurrence of each itemset
in all the transactions, prune the itemsets that do
not exceed the support threshold and get the
frequent 1-itemset L1.

2. For all k, k=2,…, use Lk to generate Ck+1 by Lk join
Lk. For each of these (k+1)-itemsets, check
whether all its k subset is in the frequent k-itemset
Lk. If the answer is yes, keep it in Ck+1; otherwise,
prune it. After getting Ck+1, scan the database once
again to count the support for all the itemsets in
Ck+1, prune those do not exceed the support
threshold and get Lk+1.

3. Repeat the above step 2 until no itemset could be
generated for Ck+1.

Apriori algorithm needs to scan the database multiple
times. When mining a huge database, multiple database
scans are costly. One feasible strategy to improve the
efficiency of Apriori algorithm is to reduce the number
of database scans.

4. SMINE ALGORITHM
SMine algorithm is an efficient algorithm to find
frequent itemsets. The number of database scans is
reduced when compared with Apriori algorithm.
During the first database scan the number of
occurrences of each item is determined and the
infrequent ones are discarded. Then the frequent items
are counted in each transaction. The transactions are
sorted based on the number of frequent items in
descending order. Then graph based approach is used
to find the frequent item sets.
4.1 Procedure
Step 1: The algorithm scans the database in order to

count the number of occurrences of each item
to find the candidate 1-itemset with their
support count.

Step 2: The set of frequent 1-itemset L1 can then be
determined by removing the items having less
than the minimum support count. It consists
of the candidate 1-itemsets satisfying

minimum support. Let the number of
frequent 1-itemset be ‘n’.

Step 3: Removes the infrequent items from each
transaction and count the number of items in
each transaction (item_count).

Step 4: The transactions are sorted in descending
order based on the item count.

Step 5: Create a table called ’M’ with two columns
namely ‘no.of.items’ and ‘no.of.
transactions’. Let no=n;

Step 6: Add a row with no.of.items = no and
no.of.transactions is equal to the number of
transactions having item_count >= no. If no
>2, then decrement ‘no’ value by 1 and repeat
step 6.

 Step 7: Select the maximum ‘no.of.items’ from the
table M having the ‘no.of.transactions‘ equal
to or greater than the minimum support count.
Let it be m. Create a directed graph starting
from all possible items in m-itemset as the
header nodes in the first level, all the
possible (m-1) itemset in the second level, all
the possible (m-2) itemset in the next level
and so on, until 2-itemset.

Step 8 : Get the ‘no.of transactions’ for m-itemset from
the table M. Let it be ‘R’. If it is greater
than or equal to the minimum support count,
then find the support count of each unvisited
node of the m-itemset by scanning first ‘R’
transactions. If the set is frequent, mark this
node and all its sub nodes as frequent items.
If a set is frequent, all its subsets must also be
frequent.

Step 9 : Go to the next level .Let m=m-1. Repeat step
8 until m =2.

Step 10: All the marked nodes are frequent itemsets.

4.2 Algorithm :
Input: Database, D, of transactions; minimum support

threshold, min_sup.
Output: L, frequent itemsets in D.
Method:
Begin

L1= find_frequent_1-itemsets(D);
n=number of items in L1;
L2, L3….., Ln are initially set to null;
for each transaction t in D
{

//Removing infrequent items from
transactions
 Delete item not in L1 from t .
 t. item_count = Number of frequent items.

}
Sort the transactions in D, descending order based on
their item_count.
call DB_details(D)
call creategraph(L1, n)

End
procedure DB_details(D)
for(k=n; k>=2; k--)
 Mk=Number of transactions having item_count >=k;

// Arrange these values in a table called ‘M’
 end procedure

 J.R. Jeba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2838-2841

2839

procedure creategraph(L1, n)
// L1 is frequent 1-itemset, n is the number of
// items in L1
 while(Mn satisfies min.support count)

 n=n-1;
Add all possible n- itemsets as the header nodes
Cn = all possible ‘n’ itemsets.
for (k=n; k >= 3; k--)
 Call subgraph(Ck)
for (k=n; k >= 2; k--)
 Call frequent_items (k)
end procedure

procedure subgraph(Ck)
 Ck-1 = {}
for each item in Ck
 {
Ck-1 = Ck-1 U (all the possible subset (k-1) itemsets)

for each subset (k-1) itemset
 {

If the node is already created then
 make a link to the parent node
 else

 create a new node for the item and make a link to
the parent node

 }
 }

end procedure
procedure frequent_items(k)
 for each itemset in Ck
 {

 If (item is not visited || not marked) then
 {
Find the support count by scanning first Mk transactions .

If it satisfies the min. support then
 {

 Mark this node and all its subnodes up to the level
2 itemsets are frequent.

 Add these marked nodes to Lk, Lk-1, Lk-2, …., L2 in
their respective array.

 }
 else
 mark this node as infrequent.

 }
 }
end procedure

SMine Algorithm reduces the number of scans when
compared to the Apriori Algorithm. It finds the
candidate 1-itemsets using the same approach as
Apriori. The remaining steps are different from
Apriori.

5. IMPLEMENTATION AND ANALYSIS
This section deals with the implementation of Apriori
and SMine Algorithm. We compare the frequent item
sets obtained and the factors that affect the efficiency of
the algorithms.
5.1 Result analysis:
For the experiment we have used datasets of Hepatitis
and Heart dataset. These datasets was obtained from
the UCI repository of machine learning databases
[CC98].
Table 1 shows the characteristics of the datasets
selected for the experiment.

To study the performance of the algorithms, support
threshold of 30% to 70% were used. The Table 2
shows that the execution time of the algorithms
decreases with varying support thresholds for a hepatitis
data set. Table 3 shows that the execution time of the
algorithms with varying support thresholds for a heart
data set. In these two cases, the execution time of
SMine is less when compared to Apriori algorithm.

Table 1: Datasets used in comparison

Table 2 : Execution Time for Apriori and SMine –

Hepatitis Data set
Support (%) Execution Time (Seconds)

 Apriori SMine
30 0.86 0.45
40 0.22 0.16
50 0.03 0.02
60 0.02 0.00
70 0.00 0.00

Fig. 1

Table 3 : Execution Time for Apriori and SMine- Heart
Data set
Support (%) Execution Time (Seconds)

Apriori SMine
30 0.06 0.04
40 0.04 0.03
50 0.03 0.02
60 0.01 0.01
70 0.01 0.00

Fig. 2

0

0.2

0.4

0.6

0.8

1

30 40 50 60 70

E
xe

cu
ti

on
 t

im
e

(s
ec

on
d

s)

Support (%)

Apriori and SMine for Hepatitis

Apriori

SMine

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

30 40 50 60 70

E
xe

cu
ti

on
 t

im
e

(s
ec

on
d

s)

Support (%)

Apriori and SMine for Heart

Apriori

SMine

Dataset
No.of

transactions
No. of

Attributes
Attribute

Types
Hepatitis.D56.
N155.C2. num

155 20
Categorical,
Integer, Real

heart.D52.N30
3.C5.num

303 75
Categorical,
Integer, Real

 J.R. Jeba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2838-2841

2840

Administrator
Line

Here, we present a performance comparison frequent
Item set Mining algorithms Apriori and SMine. We
find that, in Apriori requires multiple passes of the data
to calculate the support count.

6. CONCLUSION
In this paper, Apriori algorithm is compared with
SMine Algorithm using two different datasets namely
Hepatitis and Heart datasets. As per the result, SMine
Algorithm is superior to the Apriori algorithm.

7. REFERENCES
[1] Ashok Savasere, E. Omiecinski and S. Navathe, “An efficient

algorithm for mining association rules in large databases”,
Proceedings of the 21st International Conference on Very large
database, 1995, pp. 420-431.

[2] Deepti Chandra, Poonam Sao, Samta Gajbhiye , ”Comparative
Study of Apriori and DIC Algorithm”, Proceedings of the Int.
Conf. on Information Science and Applications ICISA 2010 6
February 2010.

[3] J.R.Jeba and S.P.Victor,” A Novel Approach for finding Frequent
item sets with Hybrid Strategies “, International Journal of
Computer Applications, ,vol : 17, No: 5,March 2011.

[4] Jia Ling, Koh and Vi-Lang Tu, “ A Tree-based Approach for
Efficiently Mining Approximate Frequent Itemsets”, IEEE
International Conference on Research Challenges in Information
Science, 2010, pp. 25-36.

[5] Jian Pei ,J. Han, J. Lu, H. Nishio.S.and Tang, “H-Mine: Hyper-
Structure Mining of Frequent Patterns in Large Databases”,
ICDM International Conference on Data Mining, ICDM, 2001,
pp. 441-448.

[6] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining Frequent Patterns
without Candidate Generation”, Proceedings of ACM SIGMOD
Conference, Dallas, TX, 2000, pp.53-87.

[7] Jong Soo Park, M.S. Chen, and P.S. Yu, “An effective hash based
algorithm for mining association rules”, Proceedings of the 1995
ACM SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995, pp. 175-188.

[8] Ramesh Agrawal, Tomasz Imielinski, and A. Swami, “Mining
association rules between sets of items in large databases”,
ACM-SIGMOD Int. Conf. Management of Data, Washington,
D.C., May 1993, pp 207–216.

[9] Senthil Kumar A.V and R.S.D. Wahidabanu, “A Frequent Item
Graph Approach for Discovering Frequent Itemsets“, Proceedings
of 2008 IEEE International Conference on Advanced Computer
Theory, 2008, pp.952-956.

 J.R. Jeba et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2838-2841

2841

